Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.03.15.23287288

Résumé

The impact of previous SARS-CoV-2 infection on the durability of Ad26.COV2.S vaccine-elicited responses, and the effect of homologous boosting has not been well explored. We followed a cohort of healthcare workers for 6 months after receiving the Ad26.COV2.S vaccine and a further one month after they received an Ad26.COV2.S booster dose. We assessed longitudinal spike-specific antibody and T cell responses in individuals who had never had SARS-CoV-2 infection, compared to those who were infected with either the D614G or Beta variants prior to vaccination. Antibody and T cell responses elicited by the primary dose were durable against several variants of concern over the 6 month follow-up period, regardless of infection history. However, at 6 months after first vaccination, antibody binding, neutralization and ADCC were as much as 33-fold higher in individuals with hybrid immunity compared to those with no prior infection. Antibody cross-reactivity profiles of the previously infected groups were similar at 6 months, unlike at earlier time points suggesting that the effect of immune imprinting diminishes by 6 months. Importantly, an Ad26.COV2.S booster dose increased the magnitude of the antibody response in individuals with no prior infection to similar levels as those with previous infection. The magnitude of spike T cell responses and proportion of T cell responders remained stable after homologous boosting, concomitant with a significant increase in long-lived early differentiated CD4 memory T cells. Thus, these data highlight that multiple antigen exposures, whether through infection and vaccination or vaccination alone, result in similar boosts after Ad26.COV2.S vaccination.


Sujets)
Déficit en protéine S , Infections , COVID-19
2.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1170883.v1

Résumé

Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. SARS-CoV-2 specific memory responses expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a more prominent germinal center (GC) response, and increased class switched memory (CSM). These B cell features correlated with both neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell lung-homing, which was sustained in the infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the B cell response to vaccination can provide mechanistic insight into the impact of prior infection on GC homing, CSM, cTfh, and neutralization activity. These data can provide early signals and mechanistic understanding to inform studies of vaccine boosting, durability, and co-morbidities.


Sujets)
COVID-19
3.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.26.21268380

Résumé

The SARS-CoV-2 Omicron variant has multiple Spike (S) protein mutations that contribute to escape from the neutralizing antibody responses, and reducing vaccine protection from infection. The extent to which other components of the adaptive response such as T cells may still target Omicron and contribute to protection from severe outcomes is unknown. We assessed the ability of T cells to react with Omicron spike in participants who were vaccinated with Ad26.CoV2.S or BNT162b2, and in unvaccinated convalescent COVID-19 patients (n = 70). We found that 70-80% of the CD4 and CD8 T cell response to spike was maintained across study groups. Moreover, the magnitude of Omicron cross-reactive T cells was similar to that of the Beta and Delta variants, despite Omicron harbouring considerably more mutations. Additionally, in Omicron-infected hospitalized patients (n = 19), there were comparable T cell responses to ancestral spike, nucleocapsid and membrane proteins to those found in patients hospitalized in previous waves dominated by the ancestral, Beta or Delta variants (n = 49). These results demonstrate that despite Omicron's extensive mutations and reduced susceptibility to neutralizing antibodies, the majority of T cell response, induced by vaccination or natural infection, cross-recognises the variant. Well-preserved T cell immunity to Omicron is likely to contribute to protection from severe COVID-19, supporting early clinical observations from South Africa.


Sujets)
Syndrome respiratoire aigu sévère , COVID-19
4.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.07.24.21261037

Résumé

The Johnson and Johnson Ad26.COV2.S single dose vaccine, designed as an emergency response to the pandemic, represents an attractive option for the scale-up of COVID-19 vaccination in resource-limited countries. We examined the effect of prior infection with ancestral (D614G) or Beta variants on Ad26.COV2.S immunogenicity approximately 28 days post-vaccination. We compared healthcare workers who were SARS-CoV-2 naive (n=20), to those infected during the first wave prior to the emergence of Beta (n=20), and those infected in the second wave (n=20), when Beta was the dominant variant. We demonstrate that a priming exposure from infection significantly increased the magnitude of spike binding antibodies, neutralizing antibodies and antibody-dependent cellular cytotoxicity activity (ADCC) against D614G, Beta and Delta variants. The magnitude of antibody boosting was similar in both waves, despite the longer time interval between wave 1 infection and vaccination (7 months), compared to wave 2 (2 months). ADCC and binding cross-reactivity was similar in both waves. However, neutralization cross-reactivity varied by wave, showing that the antibody repertoire was shaped by the spike sequence of the infecting variant. Robust CD4 and CD8 T cell responses to spike of similar or higher magnitude as those elicited by infection were induced after vaccination. In contrast to antibody responses, prior infection was not required for the generation of high magnitude T cell responses, and T cell recognition of the Beta variant was fully preserved. Therefore, Ad26.COV2.S vaccination following prior infection, even >6 months previously, may result in substantially enhanced protection against COVID-19, of particular relevance in settings of high SARS-CoV-2 seroprevalence. Furthermore, the dominant impact of the infecting variant on neutralization breadth after vaccination has important implications for the design of second-generation vaccines based on variants of concern.


Sujets)
Déficit en protéine S , Encéphalomyélite aigüe disséminée , Effets secondaires indésirables des médicaments , COVID-19
5.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.06.03.21258307

Résumé

SARS-CoV-2 variants have emerged that escape neutralization and potentially impact vaccine efficacy. T cell responses play a role in protection from reinfection and severe disease, but the potential for spike mutations to affect T cell immunity is poorly studied. We assessed both neutralizing antibody and T cell responses in 44 South African COVID-19 patients infected either with B.1.351, now dominant in South Africa, or infected prior to its emergence (first wave), to provide an overall measure of immune evasion. We show for the first time that robust spike-specific CD4 and CD8 T cell responses were detectable in B.1.351-infected patients, similar to first wave patients. Using peptides spanning only the B.1.351 mutated regions, we identified CD4 T cell responses targeting the wild type peptides in 12/22 (54.5%) first wave patients, all of whom failed to recognize corresponding B.1.351-mutated peptides (p=0.0005). However, responses to the mutated regions formed only a small proportion (15.7%) of the overall CD4 response, and few patients (3/44) mounted CD8 responses that targeted the mutated regions. First wave patients showed a 12.7 fold reduction in plasma neutralization of B.1.351. This study shows that despite loss of recognition of immunodominant CD4 epitope(s), overall CD4 and CD8 T cell responses to B.1.351 are preserved. These observations may explain why, despite substantial loss of neutralizing antibody activity against B.1.351, several vaccines have retained the ability to protect against severe COVID-19 disease.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche